ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ: ТЕПЛОВОЕ ДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА - meaning and definition. What is ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ: ТЕПЛОВОЕ ДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:     

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ: ТЕПЛОВОЕ ДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА - definition

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
Сила электрического тока
  • 190px

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ: ТЕПЛОВОЕ ДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА      
К статье ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ
Тепловое действие электрического тока впервые наблюдалось в 1801, когда током удалось расплавить различные металлы. Первое промышленное применение этого явления относится к 1808, когда был предложен электрозапал для пороха. Первая угольная дуга, предназначенная для обогрева и освещения, была выставлена в Париже в 1802. К полюсам вольтова столба, насчитывавшего 120 элементов, подсоединялись электроды из древесного угля, и когда оба угольных электрода приводились в соприкосновение, а затем разводились, возникал "сверкающий разряд исключительной яркости".
Исследуя тепловое действие электрического тока, Дж.Джоуль (1818-1889) провел эксперимент, который подвел прочную основу под закон сохранения энергии. Джоуль впервые показал, что химическая энергия, которая расходуется на поддержание в проводнике тока, приблизительно равна тому количеству тепла, которое выделяется в проводнике при прохождении тока. Он установил также, что выделяющееся в проводнике тепло пропорционально квадрату силы тока. Это наблюдение согласуется как с законом Ома (V = IR), так и с определением разности потенциалов (V = W/q). В случае постоянного тока за время t через проводник проходит заряд q = It. Следовательно, электрическая энергия, превратившаяся в проводнике в тепло, равна:
Эта энергия называется джоулевым теплом и выражается в джоулях (Дж), если ток I выражен в амперах, R - в омах, а t - в секундах.
Источники электрической энергии для цепей постоянного тока. При протекании по цепи постоянного электрического тока происходит столь же постоянное превращение электрической энергии в тепло. Для поддержания тока необходимо, чтобы на некоторых участках цепи вырабатывалась электрическая энергия. Вольтов столб и другие химические источники тока преобразуют химическую энергию в электрическую. В последующих разделах обсуждаются и другие устройства, вырабатывающие электрическую энергию. Все они действуют наподобие электрических "насосов", перемещающих электрические заряды против действия сил, содаваемых постоянным электрическим полем.
Важным параметром источника тока является электродвижущая сила (ЭДС). ЭДС источника тока определяется как разность потенциалов на его зажимах в отсутствие тока (при разомкнутой внешней цепи) и измеряется в вольтах.
Термоэлектричество. В 1822 Т.Зеебек обнаружил, что в цепи, составленной из двух разных металлов, возникает ток, если одна точка их соединения горячее другой. Подобная цепь называется термоэлементом. В 1834 Ж.Пельтье установил, что при прохождении тока через спай двух металлов в одном направлении тепло поглощается, а в другом - выделяется. Величина этого обратимого эффекта зависит от материалов спая и его температуры. Каждый спай термоэлемента обладает ЭДС ?j = Wj/q, где Wj - тепловая энергия, превращающаяся в электрическую при одном направлении перемещения заряда q , или электрическая энергия, превращающаяся в тепло при перемещении заряда в другом направлении. Эти ЭДС противоположны по направлению, но обычно не равны одна другой, если температуры спаев различаются.
У.Томсон (1824-1907) установил, что полная ЭДС термоэлемента складывается не из двух, а из четырех ЭДС. В дополнение к ЭДС, возникающим в спаях, имеются две дополнительные ЭДС, обусловленные перепадом температуры на проводниках, образующих термоэлемент. Им было дано название ЭДС Томсона.
Эффекты Зеебека и Пельтье. Термоэлемент представляет собой "тепловую машину", в определенном отношении сходную с генератором тока, приводимым в действие паровой турбиной, но без движущихся частей. Подобно турбогенератору, он превращает тепло в электроэнергию, отбирая его от "нагревателя" с более высокой температурой и отдавая часть этого тепла "холодильнику" с более низкой температурой. В термоэлементе, действующем подобно тепловой машине, "нагреватель" находится у горячего спая, а "холодильник" - у холодного. То обстоятельство, что тепло с более низкой температурой теряется, ограничивает теоретический кпд преобразования тепловой энергии в электрическую значением (T1 - T2)/T1 где T1 и T2 - абсолютные температуры "нагревателя" и "холодильника". Дополнительное снижение кпд термоэлемента обусловлено потерей тепла за счет теплопередачи от "нагревателя" к "холодильнику". См. ТЕПЛОТА
; ТЕРМОДИНАМИКА
.
Преобразование тепла в электрическую энергию, происходящее в термоэлементе, обычно называют эффектом Зеебека. Термоэлементы, называемые термопарами, применяют для измерения температуры, особенно в труднодоступных местах. Если один спай находится в контролируемой точке, а другой - при комнатной температуре, которая известна, то термо-ЭДС служит мерой температуры в контролируемой точке. Большие успехи достигнуты в области применения термоэлементов для прямого преобразования тепла в электроэнергию в промышленных масштабах.
Если через термоэлемент пропускать ток от внешнего источника, то холодный спай будет поглощать тепло, а горячий - выделять его. Такое явление называется эффектом Пельтье. Этот эффект можно использовать либо для охлаждения с помощью холодных спаев, либо для обогрева горячими спаями. Тепловая энергия, выделяемая горячим спаем, больше полного количества тепла, подведенного к холодному спаю, на величину, соответствующую подведенной электрической энергии. Таким образом, горячий спай выделяет больше тепла, чем соответствовало бы полному количеству электрической энергии, подведенной к устройству. В принципе большое число последовательно соединенных термоэлементов, холодные спаи которых выведены наружу, а горячие находятся внутри помещения, можно использовать в качестве теплового насоса, перекачивающего тепло из области с более низкой температурой в область с более высокой температурой. Теоретически выигрыш в тепловой энергии по сравнению с затратами электрической энергии может составлять T1/(T1 - T2).
К сожалению, для большинства материалов эффект настолько мал, что на практике потребовалось бы слишком много термоэлементов. Кроме того, применимость эффекта Пельтье несколько ограничивает теплопередача от горячего спая к холодному за счет теплопроводности в случае металлических материалов. Исследования полупроводников привели к созданию материалов с достаточно большими эффектами Пельтье для ряда практических применений. Эффект Пельтье оказывается особенно ценным при необходимости охлаждать труднодоступные участки, где непригодны обычные способы охлаждения. С помощью таких устройств охлаждают, например, приборы в космических кораблях.
Электрохимические эффекты. В 1842 Г.Гельмгольц продемонстрировал, что в источнике тока типа вольтова столба химическая энергия превращается в электрическую, а в процессе электролиза электрическая энергия превращается в химическую. Химические источники тока типа сухих элементов (обычных батареек) и аккумуляторов оказались чрезвычайно практичными. При зарядке аккумуляторной батареи электрическим током оптимальной величины бльшая часть сообщенной ей электрической энергии превращается в химическую энергию, которая может быть использована при разрядке аккумулятора. И при зарядке, и при разрядке аккумулятора часть энергии теряется в виде тепла; эти тепловые потери обусловлены внутренним сопротивлением аккумулятора. ЭДС такого источника тока равна разности потенциалов на его зажимах в условиях разомкнутой цепи, когда отсутствует падение напряжения IR на внутреннем сопротивлении.
Цепи постоянного тока. Для расчета силы постоянного тока в простой цепи можно использовать закон, открытый Омом при исследовании вольтова столба:
где R - сопротивление цепи и V - ЭДС источника.
Если несколько резисторов с сопротивлениями R1, R2 и т.д. соединены последовательно, то в каждом из них ток I одинаков и полная разность потенциалов равна сумме отдельных разностей потенциалов (рис. 1,а). Общее сопротивление можно определить как сопротивление Rs последовательного соединения группы резисторов. Разность потенциалов на этой группе равна
следовательно,
Если резисторы соединены параллельно, то разность потенциалов на группе совпадает с разностью потенциалов на каждом отдельном резисторе (рис. 1,б). Полный ток через группу резисторов равен сумме токов через отдельные резисторы, т.е.
Поскольку I1 = V/R1, I2 = V/R2, I3 = V/R3 и т.д., сопротивление параллельного соединения группы Rp определяется соотношением
откуда следует
При решении задач с цепями постоянного тока любого типа нужно сначала по возможности упростить задачу, пользуясь соотношениями (9) и (10).
Законы Кирхгофа. Г.Кирхгоф (1824-1887) детально исследовал закон Ома и разработал общий метод расчета постоянных токов в электрических цепях, в том числе содержащих несколько источников ЭДС. Этот метод основан на двух правилах, называемых законами Кирхгофа:
1. Алгебраическая сумма всех токов в любом узле цепи равна нулю.
2. Алгебраическая сумма всех разностей потенциалов IR в любом замкнутом контуре равна алгебраической сумме всех ЭДС в этом замкнутом контуре.
Этих двух законов достаточно для решения любой задачи, связанной с цепями постоянного тока. См. также БАТАРЕЯ ЭЛЕКТРОПИТАНИЯ; ЭЛЕКТРИЧЕСКИЕ ЦЕПИ.
ПЛОТНОСТЬ ТОКА         
ВЕКТОРНАЯ ФИЗИЧЕСКАЯ ВЕЛИЧИНА, ПОКАЗЫВАЮЩАЯ СКОЛЬКО ПРОХОДИТ ЭЛЕКТРОНОВ ЧЕРЕЗ ПЛОЩАДКУ В ЕДИНИЦУ ВРЕМЕНИ
Плотность электрического тока
одна из основных характеристик электрического тока; равна электрическому заряду, переносимому в 1 с через единичную площадку, перпендикулярную направлению тока.
Плотность электрического тока         
ВЕКТОРНАЯ ФИЗИЧЕСКАЯ ВЕЛИЧИНА, ПОКАЗЫВАЮЩАЯ СКОЛЬКО ПРОХОДИТ ЭЛЕКТРОНОВ ЧЕРЕЗ ПЛОЩАДКУ В ЕДИНИЦУ ВРЕМЕНИ
Плотность электрического тока

векторная характеристика тока; модуль вектора П. э. т. равен электрическому заряду, проходящему за единицу времени через единичную площадку, перпендикулярную направлению движения зарядов. Если плотность заряда (заряд в единице объёма) равна ρ, то П. э. т. j = ρυ, где υ - средняя скорость упорядоченного перемещения зарядов. При равномерном распределении П. э. т. по сечению проводника сила тока I равна: l = jS, где S - площадь поперечного сечения проводника.

Wikipedia

Сила тока

Сила тока, также просто ток — скалярная физическая величина, равная отношению электрического заряда d Q {\displaystyle dQ} , прошедшего через определённую поверхность за бесконечно малый промежуток времени d t {\displaystyle dt} , к длительности этого промежутка:

I = d Q d t {\displaystyle I={\frac {dQ}{dt}}}

В качестве поверхности обычно рассматривается сечение проводника.

Выбор буквенного обозначения соответствует французскому названию величины (фр. intensité du courant); реже используется символ J {\displaystyle J} .

Сила тока в Международной системе единиц (СИ) измеряется в амперах (обозначение: А), ампер является одной из семи основных единиц СИ. 1 А = 1 Кл/с.

Понятие силы тока широко используется в задачах электротехники и схемотехники. Величина I {\displaystyle I} входит в закон Ома для участка цепи.

Несмотря на наличие слова «сила» в наименовании понятия, сила тока не является силой ни по смыслу, ни по размерности.

What is ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ: ТЕПЛОВОЕ ДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА - meaning and definition